在我们的日常生活中,由于设备逐渐成为我们不可分割的一部分,我们已经看到如果没有足够的视觉能力,越来越多的应用程序将走向失败,其中包括空中无人机碰撞和机器人吸尘器“吃”了它们本不应该吃的东西。 机器视觉是人工智能正在快速发展的一个分支,旨在赋予机器可媲美人类的视觉。随着研究人员应用专门的神经网络来帮助机器识别和理解现实世界的图像,机器视觉在过去几年取得了巨大的进步。如今的计算机在视觉识别上能够做到各种各样的事情,从识别网络上的猫到在诸多的照片中识别特定的面孔。不过,该类技术还有很长的路要走。今天,我们看到机器视觉能够离开数据中心,并适用于一切从自主无人机到机器人身上,可以整理我们的食物。
在过去的一年中,围绕着人工智能的嗡嗡声,一直在非常强劲的增长。我们还从来没有如此接近的观察到这个技术的好处。2016年,将会看到新式的人工智能的供电设备,因为我们对于人工智能,所面临的最困难的挑战之一,已经取得了进展:让我们的设备,能够了解它们所看到的。
为了更好的了解机器人视觉,一个常见的类比,机器人视觉与人类自己的视觉,就好比天空中飞行的鸟类与飞机。两者最终都将依赖于基础物理学(如伯努利原理),来帮助它们飞入到高空中,但是,这并不意味着飞机将要扇动它的翅膀进行飞翔。只是因为人与机器可能会看到同样的东西,并且对这些图像进行解释的方式,甚至可能有一定的共性,最后的结果仍然可能是具有很大的不同。
虽然基本的图像分类已经变得更加容易,但是,当它涉及到从抽象的场景中提取意义和信息时,机器人就面临着一系列新的问题。错觉就是一个很好的例子,机器人视觉仍然还有很长的路要走。